db-analytics-tools


DB Analytics Tools

Databases Analytics Tools is a Python open source micro framework for data analytics. DB Analytics Tools is built on top of Psycopg2, Pyodbc, Pandas, Matplotlib and Scikit-learn. It helps data analysts to interact with data warehouses as traditional databases clients.

Why adopt DB Analytics Tools ?

Core Components

# Component Description How to import
0 db Database Interactions (Client) import db_analytics_tools as db
1 dbi Data Integration & Data Engineering import db_analytics_tools.integration as dbi
2 dba Data Analysis import db_analytics_tools.analytics as dba
3 dbviz Data Visualization import db_analytics_tools.plotting as dbviz
4 dbml Machine Learning & MLOps import db_analytics_tools.learning as dbml

Install DB Analytics Tools

Dependencies

DB Analytics Tools requires

DB Analytics Tools can easily installed using pip

pip install db-analytics-tools

Get Started

Setup client

As traditional databases clients, we need to provide database server ip address and port and credentials. DB Analytics Tools supports Postgres and SQL Server.

# Import DB Analytics Tools
import db_analytics_tools as db

# Database Infos & Credentials
ENGINE = "postgres"
HOST = "localhost"
PORT = "5432"
DATABASE = "postgres"
USER = "postgres"
PASSWORD = "admin"

# Setup client
client = db.Client(host=HOST, port=PORT, database=DATABASE, username=USER, password=PASSWORD, engine=ENGINE)

Data Definition Language

query = """
----- CREATE TABLE -----
drop table if exists public.transactions;
create table public.transactions (
    transaction_id integer primary key,
    client_id integer,
    product_name varchar(255),
    product_category varchar(255),
    quantity integer,
    unitary_price numeric,
    amount numeric
);
"""

client.execute(query=query)

Data Manipulation Language

query = """
----- POPULATE TABLE -----
insert into public.transactions (transaction_id, client_id, product_name, product_category, quantity, unitary_price, amount)
values
	(1,101,'Product A','Category 1',5,100,500),
	(2,102,'Product B','Category 2',3,50,150),
	(3,103,'Product C','Category 1',2,200,400),
	(4,102,'Product A','Category 1',7,100,700),
	(5,105,'Product B','Category 2',4,50,200),
	(6,101,'Product C','Category 1',1,200,200),
	(7,104,'Product A','Category 1',6,100,600),
	(8,103,'Product B','Category 2',2,50,100),
	(9,103,'Product C','Category 1',8,200,1600),
	(10,105,'Product A','Category 1',3,100,300);
"""

client.execute(query=query)

Data Query Language

query = """
----- GET DATA -----
select *
from public.transactions
order by transaction_id;
"""

dataframe = client.read_sql(query=query)
print(dataframe.head())
   transaction_id  client_id product_name product_category  quantity  unitary_price  amount
0               1        101    Product A       Category 1         5          100.0   500.0
1               2        102    Product B       Category 2         3           50.0   150.0
2               3        103    Product C       Category 1         2          200.0   400.0
3               4        102    Product A       Category 1         7          100.0   700.0
4               5        105    Product B       Category 2         4           50.0   200.0

Implement SQL based ETL

ETL API is in the integration module db_analytics_tools.integration. Let’s import it ans create an ETL object.

# Import Integration module
import db_analytics_tools.integration as dbi

# Setup ETL
etl = dbi.ETL(client=client)

ETLs for DB Analytics Tools consists in functions with date parameters. Everything is done in one place i.e on the database. So first create a function on the database like this :

query = """
----- CREATE FUNCTION ON DB -----
create or replace function public.fn_test(rundt date) returns integer
language plpgsql
as
$$
begin
	--- DEBUG MESSAGE ---
	raise notice 'rundt : %', rundt;

	--- EXTRACT ---

	--- TRANSFORM ---

	--- LOAD ---

	return 0;
end;
$$;
"""

client.execute(query=query)

Run a function

Then ETL function can easily be run using the ETL class via the method ETL.run()

# ETL Function
FUNCTION = "public.fn_test"

## Dates to run
START = "2023-08-01"
STOP = "2023-08-05"

# Run ETL
etl.run(function=FUNCTION, start_date=START, stop_date=STOP, freq="d", reverse=False)
Function    : public.fn_test
Date Range  : From 2023-08-01 to 2023-08-05
Iterations  : 5
[Runing Date: 2023-08-01] [Function: public.fn_test] Execution time: 0:00:00.122600
[Runing Date: 2023-08-02] [Function: public.fn_test] Execution time: 0:00:00.049324
[Runing Date: 2023-08-03] [Function: public.fn_test] Execution time: 0:00:00.049409
[Runing Date: 2023-08-04] [Function: public.fn_test] Execution time: 0:00:00.050019
[Runing Date: 2023-08-05] [Function: public.fn_test] Execution time: 0:00:00.108267

Run several functions

Most of time, several ETL must be run and DB Analytics Tools supports running functions as pipelines.

## ETL Functions
FUNCTIONS = [
    "public.fn_test",
    "public.fn_test_long",
    "public.fn_test_very_long"
]

## Dates to run
START = "2023-08-01"
STOP = "2023-08-05"

# Run ETLs
etl.run_multiple(functions=FUNCTIONS, start_date=START, stop_date=STOP, freq="d", reverse=False)
Functions   : ['public.fn_test', 'public.fn_test_long', 'public.fn_test_very_long']
Date Range  : From 2023-08-01 to 2023-08-05
Iterations  : 5
*********************************************************************************************
[Runing Date: 2023-08-01] [Function: public.fn_test..........] Execution time: 0:00:00.110408
[Runing Date: 2023-08-01] [Function: public.fn_test_long.....] Execution time: 0:00:00.112078
[Runing Date: 2023-08-01] [Function: public.fn_test_very_long] Execution time: 0:00:00.092423
*********************************************************************************************
[Runing Date: 2023-08-02] [Function: public.fn_test..........] Execution time: 0:00:00.111153
[Runing Date: 2023-08-02] [Function: public.fn_test_long.....] Execution time: 0:00:00.111395
[Runing Date: 2023-08-02] [Function: public.fn_test_very_long] Execution time: 0:00:00.110814
*********************************************************************************************
[Runing Date: 2023-08-03] [Function: public.fn_test..........] Execution time: 0:00:00.111044
[Runing Date: 2023-08-03] [Function: public.fn_test_long.....] Execution time: 0:00:00.123229
[Runing Date: 2023-08-03] [Function: public.fn_test_very_long] Execution time: 0:00:00.078432
*********************************************************************************************
[Runing Date: 2023-08-04] [Function: public.fn_test..........] Execution time: 0:00:00.127839
[Runing Date: 2023-08-04] [Function: public.fn_test_long.....] Execution time: 0:00:00.111339
[Runing Date: 2023-08-04] [Function: public.fn_test_very_long] Execution time: 0:00:00.140669
*********************************************************************************************
[Runing Date: 2023-08-05] [Function: public.fn_test..........] Execution time: 0:00:00.138380
[Runing Date: 2023-08-05] [Function: public.fn_test_long.....] Execution time: 0:00:00.111157
[Runing Date: 2023-08-05] [Function: public.fn_test_very_long] Execution time: 0:00:00.077731
*********************************************************************************************

Documentation

Documentation available on https://joekakone.github.io/db-analytics-tools.

Help and Support

If you need help on DB Analytics Tools, please send me an message on Whatsapp or send me a mail.

Contributing

Please see the contributing docs.

Maintainer

DB Analytics Tools is maintained by Joseph Konka. Joseph is a Data Science Professional with a focus on Python based tools. He developed the base code while working at Togocom to automate his daily tasks. He packages the code into a Python package called SQL ETL Runner which becomes Databases Analytics Tools. For more about Joseph Konka, please visit www.josephkonka.com.

Let’s get in touch

Github Badge Linkedin Badge Twitter Badge Gmail Badge